图3—14是大西洋准经线方向断面水温分布。可以看出,水温大体上随深度的增加呈不均匀递减。低纬海域的暖水只限于薄薄的近表层之内,其下便是温度铅直梯度较大的水层,在不太厚的深度内,水温迅速递减,此层称为大洋主温跃层(the main thermocline),相对于大洋表层随季节生消的跃层(the seasonal thermocline)而言,又称永久性跃层(the permanent thermocline)。大洋主温跃层以下,水温随深度的增加逐渐降低,但梯度很小。
大洋主温跃层的深度并不是随纬度的变化而单调地升降。它在赤道海域上升,其深度大约在300m左右;在副热带海域下降,在北大西洋海域(30°N左右),它扩展到800m附近,在南大西洋(20°N左右)有600m;由副热带海域开始向高纬度海域又逐渐上升,至亚极地可升达海面,大体呈“W”形状分布。
以主温跃层为界,其上为水温较高的暖水区,其下是水温梯度很小的冷水区。冷、暖水区在亚极地海面的交汇处,水温梯度很大,形成极锋。极锋向极一侧的冷水区一直扩展至海面,暖水区消失。
暖水区的表面,由于受动力(风、浪、流等)及热力(如蒸发、降温、增密等)因素的作用,引起强烈湍流混合,从而在其上部形成一个温度铅直梯度很小,几近均匀的水层,常称为上均匀层或上混合层(uppermixedlayer)。上混合层的厚度在不同海域、不同季节是有差别的。在低纬海区一般不超过100m,赤道附近只有50~70m,赤道东部更浅些。冬季混合层加深,低纬海区可达150~200m,中纬地区甚至可伸展至大洋主温跃层。
在混合层的下界,特别是夏季,由于表层增温,可形成很强的跃层,称为季节性跃层。冬季,由于表层降温,对流过程发展,混合层向下扩展,导致季节性跃层的消失。
在极锋向极一侧,不存在永久性跃层。冬季甚至在上层会出现逆温现象,其深度可达100m左右(图3—15),夏季表层增温后,由于混合作用,在逆温层的顶部形成一厚度不大的均匀层。因此,往往在其下界与逆温层的下界之间形成所谓“冷中间水”,它实际是冬季冷水继续存留的结果。当然,在个别海区它也可由平流造成。
大西洋水温分布的这些特点,在太平洋和印度洋也都存在。
关于季节性跃层的生、消规律如图3—16所示。这是西北太平洋(50°N,145°W)的实测情况。
3月,跃层尚未生成,即仍然保持冬季水温的分布状态。随着表层的逐渐增温,跃层出现,且随时间的推移,其深度逐渐变浅,但强度逐渐加大,至8月达到全年最盛时期;从9月开始,跃层强度复又逐渐减弱,且随对流混合的发展,其深度也逐渐加大,至翌年1月已近消失,尔后完全消失,恢复到冬季状态。
值得提出的是在季节跃层的生消过程中,有时会出现“双跃层”现象,如图中7月和8月的水温分布就是这样。这是由于在各次大风混合中,混合深度不同所造成的。
再者,在深海沟处有时会出现水温随深度缓升的逆温现象,这一方面可能由于地热的影响,另外也常因为压力增大,绝热增温使然,因此在研究大洋深层海水运动和水团分布时,最好采用位温为宜。
本文标题:世界大洋温度、盐度、密度的分布和水团(2)
手机页面:http://m.dljs.net/dlsk/haike/10806.html
本文地址:http://www.dljs.net/dlsk/haike/10806.html