空间关系是指地理空间实体对象之间的空
间相互作用关系。通常将空间关系分为三大类:
①拓扑空间关系( Topological Spatial Relations),用来描述空间实体之间的相邻、包含和相交等空间关系;②顺序空间关系(Order Spatial Relationship),描述空间实体之间在空间上的排列次序,如实体之间的前后、左右和东、南、西、北等方位关系;③度量空间关系(Metric Spatial Relationship),用于描述空间实体之间的距离等关系。
对于空间关系的描述多种多样,有定量的,也有定性的,有精确的,也有模糊的。各种空间关系的描述也并非绝对独立,而是具有一定的联系。空间关系的认识不仅与空间数据模型有着密切联系,并且与人类对空间对象的感知、语言的表达和心理因素有着密切的联系。
1)拓扑空间关系
拓扑空间关系在地理信息系统和空间数据库的研究与应用中具有十分重要的意义。拓扑空间关系的形式化描述是建立在点集拓扑理论基础之上的。这里我们详细介绍各种空间目标的拓扑空间关系,包括面-面、面-点、面-线、线-线、线-点、点-点等多种形式上的空间关系,而每一种形式的空间关系又包含更多的子形式(图2.13)。线-点空间关系的形式化表达:
2)顺序空间关系
与拓扑空间关系相比,顺序空间关系的研究目前尚未尽如人意。我们常用上下左右、前后左右、东南西北等方向性名词来描述空间实体间的顺序关系。同拓扑空间关系的形式化描述方式类似,也可以按面-面、面-点、面-线、线-线、线-点、点-点等多种组合方式来考虑不同类型的空间实体间的顺序空间关系。
计算点状空间实体之间的顺序空间关系比较容易,只要计算两点连线与某一基准方向的夹角即可。同样在计算点状空间实体和线状空间实体、点状和面状空间实体的顺序空间关系时,只需将线状和面状空间实体视为由它们的中心所形成的点状实体,然后转化为求点状实体间的顺序空间关系,所不同的是要计算点状实体是否落入面状或线状实体之中(如果是这种情况,则不考虑顺序空间关系)。
在计算线状空间实体之间以及线状和面状、面状空间实体之间的顺序空间关系时,情况就变得相当复杂。当空间实体之间的距离很大时,此时实体的大小和形状对它们之间的顺序空间关系没有影响,则可将其转化为点,其顺序空间关系也就转化为其中心点之间的顺序空间关系。但是当它们之间距离较小并且其外接多边形尚未相交时,算法变的非常复杂,目前还没有很好的解决办法。
3)度量空间关系
度量空间关系主要是指空间对象之间的距离关系。这种距离关系即可以定量地描述为特定空间中的某种距离,如A实体距离B实体200m,也可以应用与距离概念相关的术语,如远近等进行定性地描述。
本文标题:地理空间的拓扑-地理空间(2)
手机页面:http://m.dljs.net/dlsk/gisdao/50310.html
本文地址:http://www.dljs.net/dlsk/gisdao/50310.html