地理教师网之地球科学导论
当前位置: > 地理书库 > 地球科学导论 > 生态系统-生物圈(3)

生态系统-生物圈(3)

时间:2010-10-03 14:36 来源:未知 作者:云中雪 责任编辑:地理教师
-------

    (3)生态系统的物质循环

    生态系统的发展和变化除了需要一定的能量输入之外,实质上包含着作为能量载体的各种物质运动。例如,当绿色植物通过光合作用,将太阳能以化学能的形式贮存在合成的有机物质之中时,能量和物质的运动就同时并存。自然界的各种元素和化合物在生态系统中的运动为一种循环式的流动,称为生物地球化学循环。

     

 

    参与有机体生命过程的化学元素大约有30~40种,根据它们在生命过程中的作用可以分为三类:

    ·能量元素,包括碳(C)、氢(H)、氧(O)、氮(N),它们是构成蛋白质的基本元素和生命过程必需的元素;

    ·大量元素,包括钙(Ca)、镁(Mg)、磷(P)、钾(K)、硫(S)、钠(Na)等,它们是生命过程大量需要的元素;

    ·微量元素,包括铜(Cu)、锌(Zn)、硼(B)、锰(Mn)、钼(Mo)、钻(Co)、铁(Fe)、铝(Al)、铬(Cr)、氟(F)、碘(I)、溴(Br)、硒(Se)、硅(Si)、锶(Sr)、钛(Ti)、钒(V)、锡(Sn)、镓(Ga)等,它们尽管含量甚微,但却是生命过程中不可缺少的元素。

    这些化学元素统称为生物性元素,无论缺少哪一种,生命过程都可能停止或产生异常。例如碳水化合物是由水和CO2经光合作用形成的,但光合作用过程中还必须有氮、磷以及微量元素锌、钼等参加反应,同时还必须在酶的活性下进行,而酶本身又包括多种微量元素。

    在自然环境中,每一种化学元素都存在于一个或多个贮存库中,元素在环境贮存库中的数量通常大大超过其结合在生命体贮存库中的数量。例如,大气圈和生物圈分别是氮元素的贮存库,且在大气圈中氮的数量远远大于在生物圈中的数量。元素在“库”与“库”之间的移动便形成物质的流动。为了衡量生态系统中营养物质的周转状况,引入周转率和周转时间的概念。周转率指单位时间内出入一个贮存库的营养物质流通量占库存营养物质总量的比例;周转时间是周转率的倒数,指移动贮存库中全部营养物质所需的时间。可见,周转率愈大,周转时间愈短。例如,大气圈中氮的周转时间约为100万年,海洋中硅的周转时间约为8000年。在自然生物地球化学循环中,某种物质输入和输出各贮存库的数量应当处于大体平衡状态,使该物质在各贮存库内的存量保持基本恒定。如果一个贮存库的某种物质输入与输出失衡,使其存量增加或减少,必将会对整个生态系统的功能产生一系列难以预料的影响。由于人类燃烧化石燃料和砍伐森林,导致的大气贮存库中CO2浓度的增加、温室效应加剧和对流层气温升高,便是一个显著的例子。

    根据属性的不同,生物地球化学循环可分为三种主要类型:水循环,气体型循环和沉积型循环。因为水循环和沉积型循环已分别在其他章节中涉及,本节只介绍气体型循环的内容。

    气体型循环主要包括碳和氮的循环,这两个元素的贮存库主要是大气和海洋。循环具全球性。

     碳循环 碳是构成有机体的基本元素,占生活物质总量的25%。在无机环境中,碳主要以CO2或者碳酸盐的形式存在。生态系统中的碳循环基本上是伴随着光合作用和能量流动过程进行的。在有阳光的条件下,植物把大气中的CO2转化为碳水化合物,用以构成自身。同时,植物通过呼吸过程产生的CO2被释放到大气中,供植物再度利用,这是碳循环的最简单形式。CO2在大气中的存留时间或周转时间大约为50~200年。

    植物被动物采食后,碳水化合物转入动物体内,经消化、合成,由动物的呼吸排出CO2。此外,动物排泄物和动、植物遗体中的碳,经微生物分解被返回大气中,供植物重新利用,这是碳循环的第二种形式。陆地生物群中含有大约5500×108t的碳,海洋生物群中含有大约30×108t的碳。

    全球储藏的矿物燃料中含有大约10×1012t的碳,人类通过燃烧煤、石油和天然气等释放出大量CO2,它们也可以被植物利用,加入生态系统的碳循环中。此外,在大气、土壤和海洋之间时刻都在进行着碳的交换,最终碳被沉积在深海中,进入更长时间尺度的循环。这些过程构成了碳循环的第三种形式。

    应当指出,上述三种碳循环的形式是对全球碳循环过程的一种简化,这些形式的碳循环过程是同时进行,彼此联系的(图10-10)。

     

 

     氮循环 氮是生态系统中的重要元素之一,因为氨基酸、蛋白质和核酸等生命物质主要由氮所组成。大气中氮气的体积含量为78%,占所有大气成分的首位,但由于氮属于不活泼元素,气态氮并不能直接被一般的绿色植物所利用。氮只有被转变成氨离子、亚硝酸离子和硝酸离子的形式,才能被植物吸收,这种转变称为硝化作用。能够完成这一转变的是一些特殊的微生物类群如固氮菌、蓝绿藻和根瘤菌等,即生物固氮;闪电、宇宙线辐射和火山活动,也能把气态氮转变成氨,即高能固氮;此外,随着石油工业的发展,工业固氮也成为开发自然界氮素的一种重要途径。

    自然界中的氮处于不断的循环过程中。首先,进入生态系统的氮以氨或氨盐的形式被固定,经过硝化作用形成亚硝酸盐或硝酸盐,被绿色植物吸收并转化成为氨基酸,合成蛋白质;然后,食草动物利用植物蛋白质合成动物蛋白质;动物的排泄物和动植物残体经细菌的分解作用形成氨、CO2和水,排放到土壤中的氨又经细菌的硝化作用形成硝酸盐,被植物再次吸收、利用合成蛋白质。这是氮在生物群落和土壤之间的循环。由硝化作用形成的硝酸盐还可以被反硝化细菌还原,经反硝化作用生成游离的氮,直接返回到大气中,这是氮在生物群落和大气之间的循环。此外,硝酸盐还可能从土壤腐殖质中被淋溶,经过河流、湖泊,进入海洋生态系统。水体中的蓝绿藻也能将氮转化成氨基酸,参与氮的循环,并为水域生态系统所利用。至于火山岩的风化和火山活动等过程产生的氨同样进入氮循环,只是其数量较小(图10-11)。

    当人类工业固氮之前,自然界中的硝化作用和反硝化作用大体处于平衡状态,随着工业固氮量的增加,这种平衡状态正在被改变。据估计,为了满足迅速增长的人口对粮食的需求,公元2000年的全球工业固氮量将可能超过108t,这将对全球氮循环产生怎样的影响,是值得研究的重要科学问题。

     

     


  本文标题:生态系统-生物圈(3)
  手机页面:http://m.dljs.net/dlsk/dike/21159.html
  本文地址:http://www.dljs.net/dlsk/dike/21159.html
顶一下
(0)
0%
踩一下
(0)
0%
-------
欢迎你对生态系统-生物圈(3)发表评论
 发表评论请自觉遵守互联网相关的政策法规,本站地址:http://www.dljs.net
评价:
用户名: 验证码: 点击我更换图片
(输入验证码,选匿名即可发表)
关于生态系统-生物圈(3)的最新评论 >>>查看详细评论页